
i
i

“jgt” — 2012/6/4 — 18:38 — page 2 — #2 i
i

i
i

i
i

Vol. [VOL], No. [ISS]: 1–15

Normal Mapping with Low-Frequency Pre-
computed Visibility

Michal Iwanicki
CD Projekt RED

Peter-Pike Sloan
Disney Interactive Studios

Abstract. Normal mapping is a common technique used in video games, de-

coupling surface details stored at high spatial frequencies which are often tiled or

repeated, from lighting information that is both unique and stored at a lower sam-

pling rates. This paper presents two techniques that couple normal maps on static

geometry with soft shadows from smooth distant lighting in a more efficient man-

ner compared to previous work. In the first technique the visibility function is

represented using low-order spherical harmonics, and the product of the Lamber-

tian clamped cosine function and the lighting environment is tabulated in textures.

The second technique uses principal component analysis to compress the visibility

function, decreasing the data size and increasing the performance. Finally we also

examine the efficiency of four common parameterizations for spherical harmonics.

1. Introduction

Generating realistic images of complex scenes at interactive rates is a chal-
lenging problem. Games have traditionally used a combination of static light
maps and dynamic point or directional light sources. Surfaces are generally
textured with both reflectance properties and normal maps [Blinn 78, Peercy
et al. 97] that approximate complex surface details. These textures tend to

© A K Peters, Ltd.

2 1086-7651/06 $0.50 per page

i
i

“jgt” — 2012/6/4 — 18:38 — page 3 — #3 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 3

Figure 1: Normal mapped house model rendered using our technique

be sampled at high spatial sampling rates and are often layered and tiled to
create even higher effective sampling rates. In contrast, precomputed lighting
techniques require unique representations of a signal and are stored at much
lower sampling rates. It is impractical to sample these unique details at the
effective composite sampling rate.

For static lighting these interdependencies have been decoupled both in
film [Tabellion and Lamorlette 04] and games [McTaggart 04, Chen 08]. For
parameterized lighting, a heavy weight technique that can model fine scale
lighting effects [Sloan et al. 03b] has been proposed along with a lighter weight
technique [Sloan 06] inspired by techniques used in games [McTaggart 04].

This work focuses on just shadows, not inter-reflections. A simpler pre-
computed signal is used, visibility instead of a transfer matrix, that reduces
storage costs and enables higher frequency lighting compared to previous work
[Sloan 06].

2. Background

Decoupling of normal variation from lighting has been done in off-line ren-
dering [Tabellion and Lamorlette 04], and games [McTaggart 04, Good and
Taylor 05, Chen 08] for static lighting. Chen [Chen 08] modeled both diffuse
and glossy low frequency lighting, while most of the other work, like ours,
focused on diffuse lighting.

Precomputed Radiance Transfer (PRT) [Sloan et al. 02] enables interactive
rendering of static objects/scenes with complex global illumination effects un-
der dynamic (often distant) illumination. The work on PRT parameterized
lighting with low frequency spherical harmonics, as do we, but instead of
storing a transfer vector that encodes normal-dependence we simply store the
visibility function like Ng et al. [Ng et al. 04]. The reflectance equation can

i
i

“jgt” — 2012/6/4 — 18:38 — page 4 — #4 i
i

i
i

i
i

4 journal of graphics tools

then be efficiently evaluated for an arbitrary normal using spherical harmon-
ics tripling coefficients analogous to the wavelet triple product approach [Ng
et al. 04]. PRT has been extended to handle effects at finer spatial scales in
two previous papers: the first approach can model complex local effects but
is too heavyweight for games [Sloan et al. 03b], while the second approach
was only capable of handling normal variation [Sloan 06]. Unlike our pro-
posed technique, both of these papers modeled direct and indirect light, but
at a large storage cost for transfer matrices stored over the surface of the
mesh. These matrices can be compressed at vertices [Sloan 06], but still use
significantly more memory than our approach.

Another popular approach to model complex distant illumination is to use
preconvolved environment maps together with precomputed ambient occlu-
sion maps. This method is very cheap, since the preconvolved enviroment
map can be represented with a low order SH vector or a low resolution cube-
map, and ambient occlusion requires just a single floating point component
per shade point. However this method is limited in the sense that directional
occlusion is not accounted for and variations in distant illumination do not af-
fect e.g. the shadowing on the surface. A more heavyweight technique [Green
et al. 07] precomputes visibility on static scenes at the vertices and uses that
to add approximate shadowing to preconvolved environment mapping tech-
niques. Our approach focuses on diffuse reflection and evaluates the product
of visibility and lighting more accurately.

The use of directional lightmaps (as in [McTaggart 04, Good and Taylor 05])
addresses the aforementioned problems, however only under very limiting dy-
namic lighting constraints where a separate set of lightmaps are required for
each expected incident lighting scenario.

Instead of using precomputed occlusion information some methods generate
it at runtime, combining precomputed occlusion generated for individual parts
of the scene [Hill 10]. Since this combination is performed in screen space, such
methods cannot afford a higher order SH representation for occlusion, due to
memory constraints (additionally, certain simplifications and approximations
are required for multiple occlusion). The combinations of these limitations
makes these techniques only practical for ambient occlusion rather than di-
rectional occlusion. Our method offers correct directional occlusion and nor-
mal mapping while still allowing fully dynamic lighting, but at a higher cost.
Other work on rendering fully dynamic scenes [Ren et al. 06, Sloan et al. 07]
use a similar rendering technique, but compute visibility on-the-fly and do
not address compression. We simply store visibility, enabling our techniques
to scale to more complex scenes.

Indirect lighting is not modeled in our technique, but direct-to-indirect
radiance transfer [Lehtinen et al. 08] could be used to model such effects.

i
i

“jgt” — 2012/6/4 — 18:38 — page 5 — #5 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 5

2.1. Spherical Harmonics

Spherical harmonics are the spherical analog of the 1D fourier basis and have
been used extensively in computer graphics. The general form is:

Y ml (θ, φ) = Km
l e

imφP
|m|
l (cos(θ)), l ∈ N,−l ≤ m ≤ l (1)

where Pml are the associated Legendre polynomials and Km
l are the nor-

malization constants

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
(2)

The above definition forms a complex basis; a real-valued basis is given by
the simple transformation

yml =


√

2Km
l cos(mφ)Pml (cos θ) m > 0√

2Km
l sin(|m|φ)P

|m|
l (cos θ) m < 0

Km
l P

m
l (cos θ) m = 0

. (3)

Low values of l (called the band index) represent low-frequency basis func-
tions over the sphere. The basis functions for band l reduce to polynomials
of order l in the Cartesian coordinates on the sphere, x, y, and z.

Spherical harmonics can only efficiently represent smooth lighting environ-
ments. Smooth lighting environments induce low spatial sampling rates, mak-
ing them more practical for applications like computer games. We use them
to represent both the lighting environments and the visibility functions and
we direct readers to the [Sloan 08] for a more detailed overview of spherical
harmonic properties.

3. Decoupling surface variation from visibility

Let us consider a diffuse-only surface with no inter-reflections. Outgoing ra-
diance for such a surface can be expressed using the reflectance equation:

I =

∫
Ω

L(~ω)V (~ω)H(~ω)d~ω (4)

Where I is the outgoing radiance, L represents the distant lighting envi-
ronment, V is the visibility function and H is the cosine lobe oriented about
the surface normal. If all of the terms are expressed in a common basis, the
reflectance equation can be solved by computing the tripling coefficients with
respect to the basis [Ng et al. 04]. With spherical harmonics, we can further

i
i

“jgt” — 2012/6/4 — 18:38 — page 6 — #6 i
i

i
i

i
i

6 journal of graphics tools

simplify this computation by first computing the SH product of two of the
three terms, followed by a dot product with the third [Ren et al. 06, Sloan 08].

In a typical PRT formulation of direct light, the lighting is projected onto
some basis and plugged into the integral. Factoring the unknown lighting
projection coefficients out results in a transfer vector that depends on normal
variation. We instead project both light and visibility into SH, and effectively
tabulate the product of light and the cosine term over the space of normals.
This allows us to decouple the smooth visibility function from high frequency
normal variations. Furthermore, the normals are completely decoupled from
all tabulated data allowing us to apply the usual tricks of tiling/layering nor-
mal maps.

For a given lighting environment, we need to evaluate L×H for any possible
normal, which we tabulate in textures - absorbing the cosine term into the
lighting allows us to pre-compute the SH products that are normally expensive
to evaluate in shaders. This will also aid in compressing the signal, which we
will discuss later.

The reflectance equation can then be evaluated by simply taking a dot
product of the SH coefficients for visibility and the L×H coefficients looked up
in the precomputed texture. Figure 2 outlines the dataflow of our algorithm.

Figure 2: Stages of algorithm. The first stage is the only one on the CPU.

3.1. Storing V information

As we apply our technique on rigid models, we can precompute visibility
functions V across the model. We store them similarly to lightmaps: a surface
parametrization of the model is created together with the texture storing an
SH-encoded visibility function at each texel. V coefficents can be stored as
floating-point values, but this leads to high memory usage. Alternatively,
other more memory-efficient storage schemes [Ko et al. 08] can be applied.

i
i

“jgt” — 2012/6/4 — 18:38 — page 7 — #7 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 7

Figure 3: Sample texture storing V coefficients.

3.2. Storing L×H Information

As stated before, L × H coefficients should be stored for all possible orien-
tations of a surface normal. The natural solution for such look-up table is a
cube map texture. It allows us to directly use the normal vector to obtain the
coefficients. As the function stored in the textures varies quite slowly, cube
map do not need to be large. See the appendix for a comparison of efficiency
of representing smooth signals with several parameterizations.

Using a cube map has two drawbacks. Given O SH visibility, 3O2 values
must be tabulated for every normal, making cube maps impractical on DX9-
class hardware since they have at most 16 textures available for a single draw

call and often only 8. The visibility functions require O2

4 textures1 and tex-
tures are commonly used for normal maps and albedo. The second drawback
is that on DX9-class hardware cube maps do not interpolate across cube faces,
causing visible discontinuities that are particularly objectionable at low reso-
lutions. These are not issues on DX10-class hardware, as it natively supports
texture arrays [Blythe 06] and also filters across cube faces.

On DX9 hardware we store L×H in dual paraboloid parametrization [Hei-
drich and Seidel 98], where we use a mapping from the disk to the square
[Shirley and Chiu 97] to guarantee C0 continuity across the equator. We use
one texture per color channel, and pack 4 values per texel, laying the spheres
out in the horizontal axis of the texture. A resolution of 16-to-32 tends to be
adequate based on our empirical analysis.

3.3. Dynamic Lighting Environments

One of the most important properties of PRT is its ability to render the same
model under totally different lighting conditions. This is still possible with

1One large texture could be used if an atlas is built, but that would generate spurious
dependent texture operations.

i
i

“jgt” — 2012/6/4 — 18:38 — page 8 — #8 i
i

i
i

i
i

8 journal of graphics tools

our method. All that is required is a separate set of L×H look-up textures
for each lighting environment we want to use. As the look-up textures contain
SH coefficients, they can be blended to produce smooth transitions. For cases
where lighting does not change drastically between consecutive frames (for
example, in lighting of outdoor scenes), blending can be performed on the
CPU and uploaded to the GPU at a lower temporal frequency, saving GPU
pixel shading power.

The symmetries of spherical harmonics can be exploited to efficiently build
our lookup textures. Given the product matrix of the lighting environment
(number of rows is 9 to represent the clamped cosine function, number of
columns is determined by the visibility order) one simply needs to scale the
rows of the matrix by the SH coefficients of a clamped cosine function oriented
with each texel’s normal. This can be done efficiently using CPU vector
instruction sets. The tabulated normals can be precomputed for a single
hemisphere and negating a SH function in Z simply changes the sign of the
basis functions where m is odd. This can be done in the unrolled vector code
that combines the columns. 90 degree Z rotations are also efficient, if only a
quarter of the hemisphere was to be used i.e., on the side faces of a cube map.

4. Compressed Rendering Technique

Unlike work on completely dynamic scenes [Ren et al. 06, Sloan et al. 07],
we would like to compress the visibility functions to reduce storage. We use
the principal component analysis (PCA) compression scheme. PCA treats a
signal as a linear combination of basis vectors and a signal mean. Instead of
storing a spatially varying signal, we need only store a set of basis vectors
and spatially varying basis function weights. As such, we trade a higher-order
SH representation with a lower-dimensional PCA basis representation, and
substituting this PCA visibility representation in (4) yields:

I =

∫
Ω

L(~ω)

(
M∑
n=1

wnVn(~ω) + Ve(~ω)

)
H(~ω)d~ω (5)

where the sum is over the M PCA basis vectors Vn, Ve is the mean visibility
vector and wn are the spatially varying PCA projection coefficients. The sum
and addition can be factored out due the linearity of integration, resulting in
the following equation:

I =

M∑
n=1

wn

(∫
Ω

L(~ω)Vn(~ω)H(~ω)d~ω

)
+

∫
Ω

L(~ω)Ve(~ω)H(~ω)d~ω . (6)

In the compressed case, our textures store these spatially varying PCA

i
i

“jgt” — 2012/6/4 — 18:38 — page 9 — #9 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 9

weights wn. Additionally, for each visibility basis vector, we generate a sep-
arate texture that is indexed by the surface normal. These textures contain
the triple product integral of lighting L, the clamped cosine lobe H (oriented
about the normal), and the corresponding visibility basis function V . We
note that these integrals result in color outputs, not SH vectors. They can be
interpreted as environment maps occluded by the visibility function defined
by a given PCA basis vector, convolved with a clamped cosine kernel.

An alternative approach requires storing just the PCA weights wn and
off-loading more computation to the shaders at run-time: we can compute
a product of Vn and L for each basis vector (resulting in an SH vector for
each color channel of the lighting environment), pass them to the shader, and
perform the final convolution against H(~ω) directly in the shader2. Visibility
(in the form of weights for the basis vectors) can also be stored at the vertices
of a mesh, instead of texels, marking a fairly simple extension of previous
work [Sloan et al. 03a].

Following the evolution of previous work, we experimented with clustered
PCA representations but our initial experiments illustrated objectionable ar-
tifacts at cluster boundaries. Addressing these artifacts is left for future work.

5. Results and discussion

Below are performance measurements for the house scene. Times are in mil-
liseconds, spent rendering the image using given technique, per frame

Unc6 Unc4 Unc3 PCA4 PCA8
8.19 ms 3.33 ms 2.75 ms 1.40 ms 2.08 ms

PCA16 PCA24 SHLmap Preconv SH2
3.61 ms 5.56 ms 0.846 ms 0.648 ms 0.607 ms

The visibility textures are 512×512 and we render into a 1280×800 frame-
buffer. The numbers are GPU time, measured on an NVIDIA GeForce GTX
295. The main cost is texture lookup, since the technique performs a depen-
dent lookup based on the normal, stressing the texture cache. In case of the
PCA compressed version, this cost could be reduced by using the variation of
the method that store just the weights, as described earlier.

Compressed results are not sensitive to the lighting order: increasing the
lighting order just requires more PCA vectors to get an accurate result. Based
on our experiments, 12 PCA vectors yields pleasing results for 4th order SH
lighting, and 16 to 24 vectors seem necessary for 6th order SH lighting. If

2The Lambertian clamped cosine lobe is simple enough to be generated analytically in
the shader, where this convolution boils down to a dot product in SH

i
i

“jgt” — 2012/6/4 — 18:38 — page 10 — #10 i
i

i
i

i
i

10 journal of graphics tools

visibility is used for something else [Green et al. 07], the uncompressed solution
would be more efficient, otherwise the compressed representation is preferable.

The table also contains the performance data for three other methods: SH
lightmaps (storing 3rd order SH lighting; see the SHLmap column), using
preconvolved environment map scaled by scalar AO (Preconv column), and
performing multiplication of the lighting environment and the visibility func-
tion followed by a convolution against the clamped cosine kernel in the shader
(this requires no precomputation of L×Hn textures, however is only practical
for SH orders up to 2; see the SH2 column).

The images below show the result of lighting the house model using tech-
niques from the table.

Figure 4: Top: Unc6, PCA4, PCA16. Bottom: SHLmap, Preconv, SH2.

The SH Lightmap offers the best quality because it models indirect light-
ing, unlike the other methods, leading to more subtle and realistic shadowing.
However this method does not allow for any changes in the lighting. Using just
the preconvolved environment map with scalar AO fails to model any shad-
owing of the bright light source on the right. The all-shader version using 2nd

order SH captures some shadowing but not with very well pronounced regions.
Our method generates compelling shadows, and the compressed version (with
16 PCA basis vectors) yields results comparable to the uncompressed version
at a much lower performance and memory cost. Our primary limitation is a
lack of indirect illumination, which is especially noticeable when the lighting
consists of a single strong directional source. This can be avoided with envi-
ronmental lighting environments covering the whole sphere or in introducing
additional terms to simulate the indirect component. We leave this last point
as an area of future work.

i
i

“jgt” — 2012/6/4 — 18:38 — page 11 — #11 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 11

Acknowledgements

Thanks to Paul Debevec and Brian James for the lightprobes used to light
the models, Stephen Hill and Derek Nowrouzezahrai for comments. The house
model is courtesy of Michal Buczkowski and Tomasz Polit, CD Projekt RED.

Figure 5: Comparison between different compression settings. Top: 4 PCA,
12 PCA, 24 PCA, uncompressed; Bottom: difference between 4/12/24/un-
compressed and uncompressed version (scaled by 400 %.)

Figure 6: Comparison of different SH orders used to encode visibility. Top:
3rd order, 4th order, 6th order. Bottom: difference between 3rd order and 6th

order, 4th order and 6th order (difference is scaled by 400 %).

i
i

“jgt” — 2012/6/4 — 18:38 — page 12 — #12 i
i

i
i

i
i

12 journal of graphics tools

(a) No normal Map (b) Normal Map (c) Eucalyptus Grove (d) St. Peter’s basilica

Figure 7: Other scene and lighting environments.

References

[Blinn 78] James F. Blinn. “Simulation of Wrinkled Surfaces.” In Computer
Graphics (SIGGRAPH ’78 Proceedings), 12, 12, 1978.

[Blythe 06] David Blythe. “The Direct3D 10 system.” ACM Transactions on
Graphics 25:3.

[Chen 08] Hao Chen. “Lighting and Materials of Halo3.” In Game Developers
Conference, 2008.

[Good and Taylor 05] Otavio Good and Zachary Taylor. “Optimized Pho-
ton Tracing Using Spherical Harmonic Light Maps.” In Siggraph 2005
Sketches, 2005.

[Green et al. 07] Paul Green, Jan Kautz, and Frédo Durand. “Efficient Re-
flectance and Visibility Approximations for Environment Map Render-
ing.” Computer Graphics Forum (Proc. EUROGRAPHICS) 26:3.

[Heidrich and Seidel 98] Wolfgang Heidrich and Hans-Peter Seidel. “View-
Independent Environment Maps.” In Proceedings of Graphics Hardware
1998, 1998.

[Hill 10] Stephen Hill. “The Rendering Tools And Techniques Of Splinter Cell:
Conviction.” In Game Developers Conference, 2010.

[Ko et al. 08] Jerome Ko, Manchor Ko, and Matthias Zwicker. ShaderX6,
Chapter Practical Methods for a PRT-based Shader Using Spherical Har-
monics, pp. 355–380, 2008.

[Lehtinen et al. 08] Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin,
Janne Kontkanen, Frédo Durand, François X. Sillion, and Timo Aila. “A
meshless hierarchical representation for light transport.” ACM Transac-
tions on Graphics 27:3.

[McTaggart 04] Gary McTaggart. “Half-Life 2 Source Shading.” In Game
Developers Conference, 2004.

i
i

“jgt” — 2012/6/4 — 18:38 — page 13 — #13 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 13

[Ng et al. 04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. “Triple prod-
uct wavelet integrals for all-frequency relighting.” ACM Transactions on
Graphics 23:3.

[Peercy et al. 97] Mark Peercy, John Airey, and Brian Cabral. “Efficient Bump
Mapping Hardware.” In SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, edited by Turner Whitted. ACM SIGGRAPH, 1997.

[Ren et al. 06] Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu,
Bo Sun, Peter-Pike Sloan, Hujun Bao, Qunsheng Peng, and Baining Guo.
“Real-time soft shadows in dynamic scenes using spherical harmonic ex-
ponentiation.” ACM Transactions on Graphics 25:3.

[Shirley and Chiu 97] Peter Shirley and Kenneth Chiu. “A Low Distortion Map
between Disk and Square.” Journal of Graphics Tools 2:3.

[Sloan et al. 02] Peter-Pike Sloan, Jan Kautz, and John Snyder. “Precomputed
radiance transfer for real-time rendering in dynamic, low-frequency light-
ing environments.” ACM Transactions on Graphics 21:3.

[Sloan et al. 03a] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder.
“Clustered principal components for precomputed radiance transfer.”
ACM Transactions on Graphics 22:3.

[Sloan et al. 03b] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John
Snyder. “Bi-scale radiance transfer.” ACM Transactions on Graphics
22:3.

[Sloan et al. 07] Peter-Pike Sloan, Naga K. Govindaraju, Derek
Nowrouzezahrai, and John Snyder. “Image-Based Proxy Accumu-
lation for Real-Time Soft Global Illumination.” In Pacific Graphics,
2007.

[Sloan 06] Peter-Pike Sloan. “Normal Mapping for Precomputed Radiance
Transfer.” In ACM Symposium on Interactive 3D Graphics and Games,
pp. 23–26. ACM Digital Library, 2006.

[Sloan 08] Peter-Pike Sloan. “Stupid Spherical Harmonics (SH) Tricks.” In
Game Developers Conference, 2008.

[Tabellion and Lamorlette 04] Eric Tabellion and Arnauld Lamorlette. “An
approximate global illumination system for computer generated films.”
ACM Transactions on Graphics 23:3.

i
i

“jgt” — 2012/6/4 — 18:38 — page 14 — #14 i
i

i
i

i
i

14 journal of graphics tools

A. Choice of Spherical Parameterization

We store many low resolution environment maps and would like to leverage
texture hardware as best as possible. The signals we are storing are repre-
sented using spherical harmonics, so the ability of a given parameterization to
reconstruct the spherical harmonics accurately is of utmost importance. To
this end, we compare four parameterizations of the sphere:

• Dual Orthographic Projection

• Dual Parabaloid Projection

• Cube maps that do not interpolate across a face (DX9)

• Cube maps that do interpolate across a face (DX10 and later)

These are all parameterizations that can be evaluated efficiently in hard-
ware, and have at least C0 continuity of the signal3 The parameterizations
based on dual hemispheres use a common mapping from the disk to the sphere
[Shirley and Chiu 97] and shrink the mapping so that the equator maps ex-
actly to the outer ring of texel centers on the square. This generates redundant
texels between hemispheres, but guarantees continuity.

To determine the efficiency of a given parameterization, we evaluate the
SH basis functions at each texel center and reconstruct one million points
over the sphere, computing the mean squared error. The figure below is a
log-log plot of MSE as a function of the total number of samples. The DX10
parameterization is best if available.

Figure 8: MSE for 3rd and 6th order SH functions.

3The DX9 cube maps do not have this property, do not work well for low resolution
textures, and are only used for comparison purposes.

i
i

“jgt” — 2012/6/4 — 18:38 — page 15 — #15 i
i

i
i

i
i

Iwanicki et al.: Normal Mapping with Low-Frequency Precomputed Visibility 15

Web Information:

Michal Iwanicki, CD Projekt RED
(michal iwanicki@naughtydog.com)

Peter-Pike Sloan, Disney Interactive Studios
(ppsloan@nvidia.com)

Received [DATE]; accepted [DATE].

